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ABSTRACT
The net slip on the southern portion of the Karakoram fault system

in southwest Tibet is estimated by restoring a piercing line defined by
two key surfaces in the South Kailas thrust system, a regional counter
thrust along the Indus-Yalu suture. Assuming that the thrust system is
planar across the Karakoram fault, we calculate 66 ± 5.5 km of normal
right slip. Documentation of the South Kailas thrust active at 13 Ma
implies that the Karakoram fault in southwest Tibet did not initiate
until after the cessation of motion on the thrust. However, field investi-
gations of the central portion of the Karakoram fault system document
the fault to have been active at 17 Ma and to have accumulated a maxi-
mum of 150 km of right slip. We suggest that these along-strike varia-
tions in the magnitude of slip and timing constraints are best explained
by southward propagation of the Karakoram fault system. This is in-
consistent with major right-lateral slip on the fault system, which was
used in support of extrusion models for Tibet.

Keywords: Himalayan orogeny, Indus-Yarlung Zangbo suture zone,
Karakoram, Pamir Range, strike-slip faults.

INTRODUCTION
Two unresolved issues regarding the evolution of the Tibetan Plateau are

(1) the fundamental deformation mode by which ~2500 km of convergence
was accommodated since the initial collision of India and Asia ca. 50 Ma, and
(2) the geodynamic significance of active regional-scale strike-slip faults bor-
dering Tibet. The regional extent and apparent large translation of geologic
features across the Karakoram fault system have suggested to many that it has
participated significantly in accommodating deformation related to the Indo-
Asian collision. Kinematic models for the role of this fault system include
(1) a transform fault accommodating wholesale extrusion of Tibetan crust
(Peltzer and Tapponnier, 1988; Tapponnier et al., 1982); (2) a strike-slip fault
accommodating oroclinal bending of the Himalayan arc (Klootwijk et al.,
1985); (3) a transfer fault accommodating northward indentation of the
Pamirs (Strecker et al., 1995; Ratschbacher et al., 1996; Searle, 1996); and
(4) a transfer fault linking extension in the Pamirs and southwest Tibet
(Ratschbacher et al., 1994). These models make specific predictions about the
timing and magnitude of slip on the Karakoram fault system and how it may
have evolved through time, yet our current understanding of its slip history
remains poor. Herein we present field observations and discuss their implica-
tions for the evolution of the Karakoram fault system in an area in southwest
Tibet, where the timing and magnitude of slip can be constrained.

KARAKORAM FAULT SYSTEM
The active trace of the Karakoram fault system extends more than

1000 km from the Pamirs to Mount Kailas (Fig. 1). Slip estimates on the fault
system are ~1000 km from offset of the Ladakh-Gangdese batholith (Peltzer
and Tapponnier, 1988); ~200 km from offset of the Indus-Yalu suture
(Ratschbacher et al., 1994); and ~150 km from offset of Baltoro-type granites,
which are a part of the Karakoram batholith (Searle et al., 1998) (Fig. 1).

We established the geometry and kinematics of the Karakoram fault
system by mapping portions of the fault system at a scale of 1:100000 be-

tween Zhaxigang and Barga (Fig. 2A). The fault system shows striking simi-
larities at each of the localities that we mapped, as outlined in the following.
From east to west, traversing from Gar Valley into the Ayi Shan (Fig. 2A), an
~2-km-wide zone of subparallel vertical to northeast-dipping right-slip and
normal-slip brittle faults occupies the base of the range front. Alluvial fans,
glacial moraines, and colluvium are both cut by, and unconformably overlie,
faults within this zone. Fault surfaces are in general poorly exposed. Conse-
quently, shear sense was primarily determined from offset geomorphic
features, such as alluvial fans or stream channels. Most of these faults show
<10 m of offset and cannot be traced more than 1 km along strike.

At the range front, between Namru and Baer (Fig. 2A), right-slip
faults, normal-slip faults, and normal right-slip faults dip moderately (~45°)
to the east and west (Fig. 2B). Slip on these faults created flatirons along the
east side of the range. The tops of the flatirons are ~500–1500 m above the
valley floor. We refer to this set of through-going, range-bounding faults
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collectively as the master fault. It has a linear trace across the range front,
and along much of its length cuts granodiorite belonging to the Gangdese
batholith. Granodiorites exposed in the Namru areas can be correlated
across the fault and imply ≥500 m of normal slip on the master fault. Where
exposed, a thin layer (<10 cm) of foliated gravely clay gouge defines the
fault surface. East of Menci (Fig. 2A), where the master fault cuts serpenti-

nite, the gouge zone is thicker, ranging from 1 to 10 m. Shear sense on the
master fault was determined primarily from tool marks and chatter marks
that suggest dominantly right slip motion.

Fault-slip data were collected at each mapped area along the Karakoram
fault system, and were used to characterize its regional slip direction. Measure-
ments of the master fault strike between 133° and 152° and dip between 35°
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and 60° to the northeast. Most of the kinematic data from the master fault
and satellite small-scale right-slip faults plot with a rake ≤20° from the
south, indicating a dominant component of right slip (Fig. 2C). Fewer
kinematic data plot along two north-striking great circles dipping east and
west. These measurements are from north-striking normal faults generally
concentrated at places where the master fault steps to the right.

SOUTH KAILAS THRUST SYSTEM
In order to determine net slip on the Karakoram fault system, we

mapped the South Kailas thrust on both sides of the Karakoram fault system
(Fig. 2A). This thrust has been correlated with the Renbu-Zedong thrust in
southeast Tibet, and the Main Zanskar backthrust in the Western Himalaya
(Searle, 1986); collectively, they were referred to as the Great Counter thrust
by Yin et al. (1999). We mapped the thrust at four areas, Namru, Baer
(southwest side of Karakoram fault), Menci, and Darchan (northeast side of
the Karakoram fault) (Fig. 2A). The South Kailas thrust at each of these
localities shows similar stratigraphic and structural relationships. It is com-
posed of a system of north-directed thrusts. The most foreland of these cuts
upsection at a 30°–35° dip, placing Triassic-Jurassic strata and locally ultra-
mafic bodies over Tertiary conglomerate. The conglomerate, referred to as
the Kailas conglomerate by Gansser (1964), contains red and green volcanic
and granitic clasts. This unit unconformably overlies a Cretaceous-Tertiary
granite (Chen and Xu, 1987; Yin et al., 1999). In the Baer area, this foreland-
most thrust is not exposed because it has been cut by the Karakoram fault
system. Except where serpentinite abuts the fault, the thrust displays brittle
fabrics. There is a <1-m-thick zone of coarse-grained foliated pebbly-sandy
clay gouge. Adjacent to the fault, the footwall strata display drag folds, sug-
gestive of thrust motion. Farther from the fault (>10 m) the footwall strata
are planar. These similarities suggest that the thrust at each locality repre-
sents the same fault. Moreover, the observation that the thrust juxtaposes
nearly identical units on both sides of the Karakoram fault system implies a
similar magnitude of slip across the fault system.

MAGNITUDE AND TIMING OF SLIP
In order to calculate the net slip on the Karakoram fault, we define an

intersection line between the conglomerate-granite unconformity and the
South Kailas thrust, which is offset by the Karakoram fault system (Fig. 2A).
The strike and dip of the South Kailas thrust at these three areas are similar
(Fig. 2D). The best-fit plane to the South Kailas thrust is oriented 115°,
32°SW (Fig. 2E). Our measurements of the conglomerate-granite uncon-
formity include both attitudes of the unconformity and bedding imme-
diately above the unconformity. The best-fit plane to the unconformity and
footwall bedding is oriented 122°, 08°SW (Fig. 2E). The intersection line of
these two best-fit planes is oriented 293°, 01° (Fig. 2E).

We calculate the offset of this line along our estimated regional
orientation of the master Karakoram fault between 32°40′ and 31°20′
(Fig. 2C), which is based on our own measurements and those presented in
Liu (1993). Figure 2F shows a schematic representation of our geometric
simplification and structural analysis. The geometrically simplified trace of
the Karakoram fault system is chosen to daylight midway along the
approximately north-striking right step in the fault system ~30 km south of
Namru (Fig. 2A). The intersection line between the South Kailas thrust and
the conglomerate-granite contact intersects the west side and east side of the
Karakoram fault at the 5600 m and 1800 m structure contours, respectively.
The calculated net slip is 66 ± 5.5 km oriented 137°, 3°. The net slip de-
composes into 65 ± 5.5 km of right slip oriented 140°, 00° and 3.8 ± 0.6 km
of normal slip oriented 050°, 45°. The error we associate with our slip esti-
mate is based on the uncertainty of the orientation of the intersection line.

Because our slip calculation is based on offset of the South Kailas
thrust and the conglomerate-granite unconformity, it only constrains the
magnitude of slip since the thrust ceased moving. On the basis of modeled
K-feldspar 40Ar/ 39Ar data from clasts in the footwall conglomerate of the
South Kailas thrust, Yin et al. (1999) suggested that the thrust was active

ca. 13 Ma. This constraint places an upper bound on the timing of slip on
the Karakoram fault system of <13 Ma.

DISCUSSION
We estimate that the southern portion of the Karakoram fault system has

accumulated ~66 km of dominantly right slip since after 13 Ma. On the basis
of the apparent offset of the northern extent of the Ladakh-Gangdese batholith
(Fig. 1) from long 78°E to 85°E across the Karakoram fault system, Peltzer
and Tapponnier (1988) estimated 1000 km of right slip since about 50 Ma,
which implied large-scale extrusion of Tibetan crust. Considering both these
estimates requires that ~940 km of right slip on a proto-Karakoram fault
occurred prior to initiation of the South Kailas thrust. However, the northern
limit of the Gangdese batholith on the northeast side of the Karakoram fault
must be west of long 81°E because granites representing the batholith are
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present in the Mount Kailas area (Gansser, 1964; Chen and Xu, 1987; Yin
et al., 1999; observations noted herein) and potentially as far west as the Gar
Valley (Chen and Xu, 1987) (Fig. 2A), thus lowering this slip estimate by at
least 500 km and possibly as much as 700 km. Although this feature may be
a viable candidate for which Tertiary offsets along the Karakoram fault may
be calculated, its position in western Tibet is not well constrained. Therefore,
we emphasize the lack of evidence supporting the existence of a proto-
Karakoram fault and thus large-scale eastward extrusion of Tibetan crust.

Alternatively, our results along the southern portion of the Karakoram
fault system combined with those from the central Karakoram fault system
(Searle et al., 1998; Dunlap et al., 1998) suggest that it has lengthened
through time. Two complementary studies along the central Karakoram fault
(37°N–33°N) by Searle et al. (1998) and Dunlap et al. (1998) documented
two periods of rapid cooling of fault-zone rocks resulting in exhumation of
21–17 Ma leucogranites along the central Karakoram fault in Ladakh during
a transpressional phase from 17 to 11 Ma, and a later dominantly strike-slip
phase from 11 to 0 Ma. Searle et al. (1998) estimated a maximum of 150 km
of accumulated slip on the Karakoram fault system since 17 Ma (Fig. 1). The
timing and style of faulting in southwest Tibet is only consistent with the
second (strike slip) phase. An explanation for the lack of 17–11 Ma trans-
pressional deformation along the Karakoram fault in southwest Tibet is that
slip may have been transferred to one of several Cenozoic thrusts in the
Banggong Co and Shiquanhe areas (Fig. 1). Geologic maps by De Terra
(1932), Chen and Xu (1987), Matte et al. (1996), and Kapp et al. (1999)
show several south to south-southeast–directed thrust faults extending east-
ward from the Karakoram fault system. On the basis of the timing and slip
constraints we propose the following kinematic model for the evolution of
the Karakoram fault system (Fig. 3). During stage 1, 17–11 Ma, the Karakoram
fault system acts as a transfer fault linking thrust systems now exposed in the
central Pamirs along the Rushan-Pshart zone (Burtman and Molnar, 1993;
Strecker et al., 1995; L. Ratschbacher, 1999, personal commun.) and west
Tibet (De Terra, 1932; Chen and Xu, 1987; Matte et al., 1996; Kapp et al.,
1999). It is attractive to link the Karakoram fault system to thrusts in west
Tibet during the middle Miocene because it explains the lack of strike-slip
faulting in southwest Tibet at that time, during which the South Kailas thrust
is interpreted to have been moving (Yin et al., 1999). It has been suggested
(Burtman and Molnar, 1993; Searle, 1996) that indentation of the Pamirs
during the middle Miocene was accompanied by clockwise rotation of the
western Tibet. During stage 2, from 11 Ma to present, the Karakoram fault
system evolves or reactivates as a transtensional fault system and lengthens
southward into southwest Tibet. Assuming that the Karakoram fault system
evolved in this manner, the slip estimate and timing constraint of Searle et al.
(1998) implies that the Karakoram fault system accumulated ~84 km of slip
between 17 and 11 Ma, yielding an average slip rate of 14 mm/yr. The aver-
age slip rate on the southern segment of the Karakoram fault system since ca.
11 Ma has been 6 mm/yr.

CONCLUSIONS
A regional backthrust system, locally referred to as the South Kailas

thrust, is offset by the Karakoram fault system in southwest Tibet. By assum-
ing that the thrust system is planar across the Karakoram fault system, we
calculate 66 ± 5.5 km of normal right slip. Documentation of the South
Kailas thrust being active ca. 13 Ma by Yin et al. (1999) implies that the
Karakoram fault in southwest Tibet did not initiate until after the cessation of
motion on the thrust. However, field investigations of the central portion of
the Karakoram fault system (Banggong Co area) document that the fault was
active at 17 Ma and has accumulated a maximum of 150 km of right slip. We
suggest that these along-strike variations in the magnitude of slip and timing
constraints reflect southward propagation of the Karakoram fault system.
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